Ex situ and in situ characterization of patterned photoreactive thin organic surface layers using friction force microscopy

نویسندگان

  • Quan Shen
  • Matthias Edler
  • Thomas Griesser
  • Astrid-Caroline Knall
  • Gregor Trimmel
  • Wolfgang Kern
  • Christian Teichert
چکیده

Photolithographic methods allow an easy lateral top-down patterning and tuning of surface properties with photoreactive molecules and polymers. Employing friction force microscopy (FFM), we present here different FFM-based methods that enable the characterization of several photoreactive thin organic surface layers. First, three ex situ methods have been evaluated for the identification of irradiated and non-irradiated zones on the same organosilane sample by irradiation through different types of masks. These approaches are further extended to a time dependent ex situ FFM measurement, which allows to study the irradiation time dependent evolution of the resulting friction forces by sequential irradiation through differently sized masks in crossed geometry. Finally, a newly designed in situ FFM measurement, which uses a commercial bar-shaped cantilever itself as a noncontact shadow mask, enables the determination of time dependent effects on the surface modification during the photoreaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Miniature Cone Penetration Test (Mini-CPT) to determine engineering properties of sandy soils

In-situ testing techniques have proven to be successful in improving the speed and reliability of geotechnical investigations. One of the most common in-situ methods in engineering geology and site investigation is Cone Penetration Test (CPT), which is mainly used for characterization of soils, as it is a robust, simple, fast, reliable and economic test that can provide continuous soundings of ...

متن کامل

In-situ synthesis and characterization of reduced graphene oxide –Ag nanocomposites

Reduced graphene oxide(rGO)–silver(Ag) nanocomposites have been prepared by using solution based facile one-pot synthesis process. The reaction process involves high-temperature liquid-phase exfoliation of graphite oxide and silver acetate in presence of N-N’dimethylformamide (DMF) solvent, resulting in simultaneous formation of rGO as well as Ag nanoparticles. Different nanocomposites have bee...

متن کامل

In-situ mask removal in selective area epitaxy using metal organic chemical vapor deposition

We demonstrate an in situ mask removal technique for use in selective area epitaxy (SAE) by metal organic chemical vapor deposition (MOCVD). The mask material is native aluminum oxide (AlxOy) formed by wet thermal oxidation of a thin AlGaAs layer. The AlxOy layer is patterned using standard photolithography and wet chemistry outside of chamber. The AlxOy layer forms a high-quality, pin-holefree...

متن کامل

Physicochemical Characterization of Natural and ex-Situ Reconstructed Sea-Surface Microlayers.

Chemical composition and physico-chemical characteristics of natural and ex-situ reconstructed sea surface microlayer samples were studied using a complex methodological approach. Surface microlayer samples and the underlying seawater were collected in different seasons and different weather conditions in the northern most part of the Adriatic sea. The techniques used were thin layer chromatogr...

متن کامل

Hierarchy of adhesion forces in patterns of photoreactive surface layers.

Precise control of surface properties including electrical characteristics, wettability, and friction is a prerequisite for manufacturing modern organic electronic devices. The successful combination of bottom up approaches for aligning and orienting the molecules and top down techniques to structure the substrate on the nano- and micrometer scale allows the cost efficient fabrication and integ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014